Cubely: Virtual Reality Block-based Programming Environment

Author’s Name
Institution
City, State

E-mail@address

ABSTRACT

Block-based programming languages are successfully being used as
an alternative way of teaching introductory programming concepts.
The success is in part due to the low barrier of entry and the visual
game-like appeal fostering experimentation and creativity. Virtual
reality (VR) presents a step further to even more immersive experi-
ence. In this project, we designed an immersive VR programming
environment in which novice programmers solve programming
puzzles within a virtual world. The puzzles are similar to Code.org
exercises, and the solution (program itself) is assembled by the
programmer within the same virtual world. A program in this VR
environment consists of cubes (blocks) assembled into program
structures, while the program execution is traced to individual
cubes and can be directly observed in the virtual world. We evalu-
ated usability of the VR programming environment and students’
perceptions in comparison to the usual 2D block-based program-
ming interface. Students found it easy to work with the new VR
interface, and slightly preferred using the VR interface over the
traditional 2D block-based programming.

CCS CONCEPTS

«Applied computing — Interactive learning environments;
+Human-centered computing — Virtual reality;

KEYWORDS
virtual reality, virtual learning environment, visual programming

ACM Reference format:

Author’s Name. 2017. Cubely: Virtual Reality Block-based Programming
Environment. In Proceedings of ACM Symposium on Virtual Reality Software
and Technology, El Gothenburg, Sweden, November 2017 (VRST'2017), 4 pages.
DOI: 10.475/123 4

1 INTRODUCTION

Introducing novices to programming has been of many educators’
and researchers’ interest, with the main objective being the same
- to teach programming in engaging and intuitive way. Proposed
approaches mostly abstract from actual low-level programming
languages to domain-specific languages designed for specific tasks,
e.g., to move a character (robot, animal, etc.) on a map, interact
with objects and reach the final destination [7]. The currently most
popular approach is to represent the single operations, that the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

VRST’2017, El Gothenburg, Sweden

© 2017 Copyright held by the owner/author(s). 123-4567-24-567/08/06...$15.00

DOI: 10.475/123_4

virtual character can perform, in the form of Lego-like blocks that
are assembled together to create a sequence (program) which solves
the given task. A learner uses these blocks with intuitive drag-and-
drop interactions in the programming environment and the blocks
are shaped to indicate which blocks may be put together, in order
to maintain the code syntactically correct [2, 7].

Block-based programming environments (BBPE) have gained
on popularity among educators and learners through various ap-
plications [1], e.g., Scratch, Code.org, Blockly, Karel-3D. However,
conventional way of interaction with virtual objects on computer
screen with mouse or touch limits the learner from getting im-
mersed into the learning environment. With current growth in
availability of devices for augmented or virtual reality, we see pos-
sibilities for making block-based programming more immersive
than before.

In this paper, we present our first results with Cubely, a block-
based programming environment in virtual reality, with blocks,
represented as cubes, which the learner manipulates with and as-
sembles together to solve similar programming exercises to those
found in the Code.org e-learning platform. For the first evaluations,
we templated the Cubely programming environment to a theme of
the popular Minecraft ! video game to further engage the learner.
However, instead of assembling the source code on the computer
screen with conventional Scratch blocks and seeing results in vir-
tual environment, like in Microsoft Code Builder for Minecraft
Education Edition 2, the program is assembled in the same environ-
ment where the code is executed and the learner does not have to
switch between real and virtual reality. Other advantages of Cubely
against existing BBPEs are:

e Learner can interact with cubes using the controllers in
both hands simultaneously.

o The program can be placed anywhere in the motion space.

o Learner is located in virtual reality environment where he
or she is not distracted by other surroundings.

2 RELATED WORK

Most of the existing approaches focus on easing the transition
from blocks to text-based programming. Kolling et al. [5] have
proposed new frame-based editing mode that combines features of
block-based and text-based programming. Frames are very similar
to blocks, but crucially, keyboard entry is supported. Depending
on the position and state of the cursor, keyboard input could be
interpreted as commands (corresponding frames are inserted) or
as traditional string input. Moreover, frames could be selected and
manipulated just as text (cut/copied/pasted).

!https://minecraft.net/
Zhttps://education.minecraft.net/trainings/code-builder-for-minecraft-education-
edition/

VRST’2017, November 2017, El Gothenburg, Sweden

Author’s Name

Figure 1: State of the world consists of (1) current state of the problem, (2) current program, and (3) player’s motion space.

Main

weram | FOF 3

L | Altack
Rack L .

Destroy

Figure 2: Program that uses a loop and a conditional to solve
a challenge is being executed.

Bau [2] has developed Droplet, a new block-based editor used in
Bau’s Pencil Code [3] environment and App Lab at Code.org [4].
Droplet is a programming editor that allows dual-mode editing
in blocks and text for any text program. This provides many of
the advantages of blocks (e.g. less typing, assistance with syntax,
visualization of the program) while allowing students to use text
language runtimes and participate in text language communities.

Although these approaches provide more efficient way of inter-
action with block-based representation of source code, they ignore
possible affordances of emerging virtual and augmented reality
technologies such as immersion.

To immerse a learner into programming with blocks, Melcer [6]
proposes tangible programming approach, where the blocks are real

|
Rock

After if

Figure 3: Display of placeholders of the If Rock cube.

cubes that can be assembled together and the resulting algorithm is
evaluated and displayed using the augmented reality. This way the
learner changes behavior of a virtual character by interacting with
real objects, what seems to be more natural for children than mouse
device and a computer screen. However, learner may easily get
distracted from the surroundings and the number of blocks from
each type is limited.

3 CUBELY

To make block-based programming more immersive than before,
we present Cubely>, which sets the BBPE into sandbox world in
virtual reality and represents the program blocks with cubes.
Figure 1 shows an initial state of the game world which consists
of three main components: (1) current state of the problem, (2)

3YouTube link to the video demonstration omitted to keep the submission anonymized.
Please, see the video file enclosed with the submission.

Cubely: Virtual Reality Block-based Programming Environment

<-->\, &= For 9

F 0 r 2 moveForward

trnRight

Right
moveForward turnLef turnRig

moveBack

Figure 4: Nested loops with auxiliary Link cubes that enable
the cubes in the nested loop to be laid out correctly. Red and
green lines for clarity, they are not part of the VR environ-
ment.

Figure 5: Example of a parallel branch.

current program, and (3) player’s motion space. The problem is
represented in a three-dimensional sandbox world based on the
Minecraft video game and is viewed from the third person’s perspec-
tive. The objective is to move the player’s character from the initial
position to the treasure chest and overcoming challenges along
the way by the means of executing suitable program instructions.
Challenges include white cubes that may contain either a rock or
a zombie. The program used to operate the player’s character is
assembled within the same virtual reality environment using cubes
that represent program instructions. The motion space to which the
learner (player) is confined during the game contains prototypes of
cubes that can be infinitely times used in assembling a program.

VRST’2017, November 2017, El Gothenburg, Sweden

Programs are cube structures manipulated using the hand VR
controllers. They can be placed anywhere within the VR environ-
ment and can be freely moved and rotated. The program’s cube
structure may consist of multiple 2D layers, each layer corresponds
to a single thread of execution. Within a single layer, instructions
that execute in sequence are laid out vertically below each other
while compound instructions such as loops, conditionals that re-
quire a separate body (loop) or multiple bodies (true and false
branches of conditionals) lay out the instructions in body horizon-
tally to left or right side.

Figure 2 shows a simple program during its execution. Control
flow is indicated by coloring the executed cube with black color.
Execution starts in the Main cube, control flow moves to the cube
below. The For cube executes its body 3 times, the number of
iterations is specified using the number cube to the right of the
loop’s base cube. The body of the loop is to the left of the loop’s
base cube. It executes the instructions in sequence from top to
bottom, with the exception to the conditional’s base cube that will
first evaluate the base cube (If rock) and then execute one of its
branches depending on the base cube’s outcome. Consequently,
the program will solve the puzzle (see Figure 1) regardless of the
contents of the hidden (white) cubes in the environment.

Cubes can be anywhere in the VR environment, and they can
be grouped together in fragments. All cubes in a single fragment
are aligned to a grid on a 2D plane and are moved and rotated
simultaneously. The grid is uniquely determined by the location
and rotation of the fragment’s root cube. The root cube may be the
Main cube or the topmost cube in the fragment. Parallel execution
can extend the grid to the third dimension (see Figure 5).

During program construction using the VR handheld controllers,
the newly attached cubes are automatically snapped to the grid with
the help of placeholder cubes, which are smaller cubes indicating
a possible fixing location or slot e.g. next instruction in sequence,
the number of iterations of a loop, condition’s branches. Figure 3
demonstrates the various placeholders for the conditional If Rock
cube. When a cube (or cubes when manipulating the whole frag-
ment) is approaching the placeholder a red shadow cube appears
indicating the location to which the cube will be fixed after release
from the VR handheld controller.

Note, that using this design of cube structures that requires
programmer to place the cubes near each other, we can easily get
into a situation where cubes from various parts of the program
visually collide. Figure 4 shows the auxiliary Link cubes that can
be used to fix the cubes at greater distances away from each other.

The learner can execute the assembled program starting from
the Main cube and reset the environment by manipulating auxiliary
buttons: Start button (cube) to start the execution, and Reset button
(cube) to reset effects of previous program execution. Without
triggering the Reset button between program executions, the learner
can in effect solve the programming challenge iteratively using
small partial programs without ever completing a single program
that fully solves the initial case.

4 EVALUATION

Cubely has been implemented in Unity engine to ensure compati-
bility with various VR devices.

VRST’2017, November 2017, El Gothenburg, Sweden

Table 1: Summary of questionnaire responses on scale rang-
ing from 1 (very negative) to 5 (very positive).

01 Q2 03 Q4 Prefer
Code.org | 4.21 2.11 4.21 4.16 1

(s=0.95)| (s=1.02)| (s=0.69) | (s=0.67)
Cubely 4.74 2.47 4.53 4.74 18

(s=0.71) | (s=0.94) | (s=0.68) | (s=0.55)

In evaluation we mainly examined: (1) usability of manipulating
cubes to build programs effectively, and (2) students’ perceptions
of VR programming using cubes in comparison to the traditional
2D block programming.

We evaluated Cubely in two observational studies with a total of
19 participants with average age of 17 years (s = 2.97), of which 8
were female (secondary education) and 11 male (2 with primary ed-
ucation, 8 with secondary education, and 2 with higher education).
In each of the studies, participants first solved a series of tasks on
Code.org website that uses Blockly, and afterwards the participants
engaged in playing 9 levels in Cubely using HTC Vive immersive
room-scale technology running on a workstation equipped with
GeForce GTX 1080 video card.

The participants played six levels on Code.org such that they
correspond to the levels played in Cubely except the final level that
used the Parallel cube. Levels 1 and 2 in Cubely served as a tutorial
on moving and turning the player’s character in the game world.
Levels 3 and 4 required to use simple cycles, Level 5 contained a
simple obstacle, Levels 6 and 7 contained fog (white cubes what may
contain either a rock or a zombie), Level 8 was the most challenging
level that required the use of all preceding cube types. Level 9 was
a simple level to use the Parallel cube.

At the end of the session, participants filled out a questionnaire
that consisted of 5 questions, of which Q1-Q4 were answered on
scale ranging from 1 (very negative) to 5 (very positive):

Q1 — Would you appreciate Cubely in courses at your school?
Q2 — How challenging was it for you to solve the tasks?

Q3 — How good was the provided way of interaction?

Q4 — What is your overall impression?

Which application do you prefer?

Table 1 summarizes the responses (mean and standard deviation).
Participants would appreciate Cubely more than Code.org for learn-
ing programming at their school. Solving tasks appeared to be less
challenging for them in Code.org environment. In addition to this
questionnaire, they praised ability to interact with cubes with both
hands simultaneously. Study participants had not got prior experi-
ence with interaction in the VR environment and using the HTC
Vive controllers. This slightly increased the time needed to learn
the interaction with the environment and its objects. In the end,
most of the study participants preferred Cubely over Code.org for
the immersive experience, easier interaction with cubes with hands
than blocks with mouse pointer, and not forgetting the setting in
familiar Minecraft universe.

Author’s Name

5 CONCLUSION AND FUTURE WORK

In this paper, we proposed a 3D approach to block-based program-
ming that allows learners to create programs in virtual reality en-
vironment by assembling provided cubes (blocks) into structures.
These programs control objects present in virtual scene and the
learner’s objective is to create a sequence which solves the given
task. To effectively utilize the third dimension, learners can stack
cubes along it in order to define parallel executions.

We evaluated our approach in two observational studies with
a total of 19 students. They found it easy to work with the new
VR interface and preferred it over the traditional 2D block-based
programming,.

In future work, we would like to design unique shape for each
type of control flow primitives and add option to create, use and
control data flow in assembled program. We plan to extend our eval-
uation within introductory programming courses during regular
classes, and also to evaluate Cubely in our laboratory equipped with
VR eye tracking and EEG technology to further analyze learner’s
behavior.

REFERENCES

[1] Efthimia Aivaloglou and Felienne Hermans. 2016. How Kids Code and How We
Know: An Exploratory Study on the Scratch Repository. In Proceedings of the 2016
ACM Conference on International Computing Education Research (ICER °16). ACM,
New York, NY, USA, 53-61. DOI:http://dx.doi.org/10.1145/2960310.2960325

[2] David Bau. 2015. Droplet, a Blocks-based Editor for Text Code. J. Comput. Sci.
Coll. 30, 6 (June 2015), 138-144.

[3] David Bau, D. Anthony Bau, Mathew Dawson, and C. Sydney Pickens. 2015.
Pencil Code: Block Code for a Text World. In Proceedings of the 14th International
Conference on Interaction Design and Children (IDC ’15). ACM, New York, NY,
USA, 445-448.

[4] D. A.Bau. 2015. Integrating Droplet into Applab — Improving the usability of a
blocks-based text editor. In 2015 IEEE Blocks and Beyond Workshop (Blocks and
Beyond). IEEE, 55-57.

[5] Michael Koélling, Neil C. C. Brown, and Amjad Altadmri. 2015. Frame-Based
Editing: Easing the Transition from Blocks to Text-Based Programming. In
Proceedings of the Workshop in Primary and Secondary Computing Education
(WIPSCE °15). ACM, New York, NY, USA, 29-38.

[6] Edward Melcer. 2017. Moving to Learn: Exploring the Impact of Physical Em-
bodiment in Educational Programming Games. In Proceedings of the 2017 CHI
Conference Extended Abstracts on Human Factors in Computing Systems (CHI EA
’17). ACM, New York, NY, USA, 301-306.

[7] David Weintrop and Uri Wilensky. 2015. To Block or Not to Block, That is the
Question: Students’ Perceptions of Blocks-based Programming. In Proceedings
of the 14th International Conference on Interaction Design and Children (IDC ’15).
ACM, New York, NY, USA, 199-208.

http://dx.doi.org/10.1145/2960310.2960325

	Abstract
	1 Introduction
	2 Related Work
	3 Cubely
	4 Evaluation
	5 Conclusion and Future Work
	References

